Stein Estimation for the Drift of Gaussian Processes Using the Malliavin Calculus

نویسنده

  • Anthony Réveillac
چکیده

We consider the nonparametric functional estimation of the drift of a Gaussian process via minimax and Bayes estimators. In this context, we construct superefficient estimators of Stein type for such drifts using the Malliavin integration by parts formula and superharmonic functionals on Gaussian space. Our results are illustrated by numerical simulations and extend the construction of James–Stein type estimators for Gaussian processes by Berger and Wolpert [J. Multivariate Anal. 13 (1983) 401–424].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic analysis on Gaussian space applied to drift estimation

In this paper we consider the nonparametric functional estimation of the drift of Gaussian processes using Paley-Wiener and Karhunen-Loève expansions. We construct efficient estimators for the drift of such processes, and prove their minimaxity using Bayes estimators. We also construct superefficient estimators of Stein type for such drifts using the Malliavin integration by parts formula and s...

متن کامل

Steins lemma, Malliavin calculus, and tail bounds, with application to polymer uctuation exponent

We consider a random variable X satisfying almost-sure conditions involving G := DX; DL X where DX is X’s Malliavin derivative and L 1 is the pseudo-inverse of the generator of the OrnsteinUhlenbeck semigroup. A lower(resp. upper-) bound condition on G is proved to imply a Gaussian-type lower (resp. upper) bound on the tail P [X > z]. Bounds of other natures are also given. A key ingredient is ...

متن کامل

Steins method, Malliavin calculus and infinite-dimensional Gaussian analysis

This expository paper is a companion of the four one-hour tutorial lectures given in the occasion of the special month Progress in Stein’s Method, held at the University of Singapore in January 2009. We will explain how one can combine Stein’s method with Malliavin calculus, in order to obtain explicit bounds in the normal and Gamma approximation of functionals of in…nite-dimensional Gaussian …...

متن کامل

Application of Malliavin calculus and analysis on Wiener space to long-memory parameter estimation for non-Gaussian processes

Using multiple Wiener-Itô stochastic integrals and Malliavin calculus we study the rescaled quadratic variations of a general Hermite process of order q with long-memory (Hurst) parameter H 2 ( 1 2 ; 1). We apply our results to the construction of a strongly consistent estimator for H. It is shown that the estimator is asymptotically non-normal, and converges in the mean-square, after normaliza...

متن کامل

Stein Meets Malliavin in Normal Approximation

Stein’s method is a method of probability approximation which hinges on the solution of a functional equation. For normal approximation, the functional equation is a first-order differential equation. Malliavin calculus is an infinite-dimensional differential calculus whose operators act on functionals of general Gaussian processes. Nourdin and Peccati (Probab. Theory Relat. Fields 145(1–2), 75...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006